Tarsier and ICMS: Two Approaches to Framework
Development

J.M. Rahman®’, §.M. Cuddy®® and F.G.R. Watson™*

TCSIRO Land and Water, GPQ Box 1666, Canberra, Australia 2601 {Joel Rahman @ cbr.olw.csiro.an)
b Cooperative Research Cenire Jor Catchment Hydrology
¢ California State University, Monterey Bay, California, United States

Abstract: Modelling frameworks provide models with support components that handle tasks such as
visualisation, data management and model integration. Within these broad requirements different approaches
to framework development are possible, Tarsier is a modelling framework that supports the development of
models in a high level language, such as C++. This approach allows Tarsier model developers to craft object
oriented solutions to large modelling problems. ICMS is a software system that supports the development of
models in a custom modelling language that ailows modellers with little programming experience to develop,
integrate and visualise catchment models. Both frameworks provide sophisticated tools for model linking,
data management, and data analysis and visualisation. By focusing on different user groups, Tarsier and
ICMS have evolved into quite different environments, yet both satisfy the definition of a modelling
framework. This paper concentrates on the components within each framework and the strengths and
weaknesses of the different approaches.

Keywords: Modeiling frameworks; Tarsier; ICMS; Framework design

i. INTRODUCTION Within this definition for environmenial
modelling frameworks, there is considerable room
The term environmental modelling framework is for different designs and implementations to
being applied to a wide range of software emerge. Beyond immediately obvious aesthetic
products that provide structure and functionality differences, environmental modelling frameworks
to support the development and application of tend to target different groups of model
environmental modelling applications. Breaking developers and users and provide these groups
this definition into its constituent parts we begin with a variety of structure and functionality. Other
to see the scope of the term: differences emerge during the use of a
framework, such as speed of model execution or
¢ A software product may be an application, an the ability to customise the appearance of a
application shell or a set of lbraries for model.
developing applications
e Frameworks provide a cormmon structure for We consider two eavironmental modeliing
software components and their interaction frameworks, Tarsier and ICMS, which have
and functionality that relies on this common evolved in different directions under different
structure to perform operations that might design goals and pressures. Tarsier [Watson et al.,
typically be implemented individually for 2001] s a set of libraries, along with an
each application application shell, that can be used to develop
® M()defhng frameworks allow new models to integraied environmental modelling systems with
be developed within the common structure highly customised user interfaces, such as
and applied by a variety of users decision support systems. Tarsier provides

functionality for managing the interaction
between models, data and visualisation tools, as
well as the IO requirements of models. Tarsier
supports development of models using Borland
Co+. ICMS {Reed et al., 1999] is an application
that supports the development, testing, integration
and application of environmental models. ICMS

e Environmental modeiling frameworks focus
their support on environmental modeiling
applications by catering to domain specific
requirements such as spatial and temporal
data types and visualisation tools.

1625

uses a custom modelling language and a set of
simple data types to allow developers with limited
programming experience to implement models.
The Open Modelling Engine {Rizzoli, 1998] at
the core of ICMS provides a comimon structure
for models, while the JCMS application provides
interactive toojs for linking modelling
COMPOnenis.

Tarsier and ICMS3 provide an interesting contrast
on a number of framework design issues. The
frameworks target significantly different portions
of the model development community, which may
drive some of these differences. Of most interest
is the considerably different approaches the two
frameworks take to managing data and model
integration.

2. TARSIER

Tarsier is an environmental modeiling framework
centred on a kernel of model and data
management functionaklity and an application sheil
used to house mode! user interfaces and data
visualisation tools. Tarsier provides powerful
dynamic visualisation tools to model users
without reqguiring extra effort from model
developers. Tarsier has evolved through its
applicaticn to a number of modelling applications,
including the South East Queensland
Environment Management Support System
[Watson et al., 2001]. By focussing on reusability
of code, the framework has been able to evolve to
the point that it supports multipie developers
creating semi-autonomous modules that
communicate within the Tarsier framework. By
developing both the framewwk and ifs
applications in a high level language, model
execution speed suffers little from framework
overheads.

21 Architecture

The Tarsier kernel defines a number of pareat
classes that provide the common structure for
modeis, the protocols for communication between
models and the use of data by models. Models are
implemented as a subclass of the core kernel class
User, inheriting the common model structyre and
protocols. The Tarsier model structure and
communication protocols are based on the
Observer pattern of chlient-supplier computing
[Gamma et al, 1994]. The Observer pattern
classifies objects as either Observers, objects that
are interested in the state of another object, or
Subjects, objects that can be observed. Observers
register an interest in 2 Subject by “subscribing”
1o the object. When some property of the Subject
changes, such as a cell of a raster changing value,

1626

all Observers subscribed to the Subject are
notified. Tarsier classifies classes as Users or
UJsees. Users are modules that rely on (use) other
Tarsier modules, where Usees are modules that
can be used by Users. Data types, such as Raster
and Time Series represent Usees, while all
modets, as well as visualisation tools and data
analysts, are Users. Users are themselves a
specialised class of Usees, allowing models to be
composed of sub modeis, each of which uses data
and other models. The Observer pattern decouples
a usee from s users and common users from each
other. For example, if a model manipulates 2
raster map, the model doesn’t need knowledge of
any visualisation tool accessing the map. The
manipulation represents a change of some
property of the map and triggers update
notifications to all of the map’s users. Any
visualisation of the map is notified and given the
opportunity to redraw. This decoupling of models
and visnalisation facilitates dynamic visualisation
of all model results without overhead to the model
developer. In addition to managing interaction
between data and models, User and Usee also
include support for model and data persistence.
Model developers don’t need to write code to
save model configurations, such as parameter
values or references to time series inputs.

The Tarsier kernel includes twa classes for
managing the Usees in the system, the Usee
Registry and the Usees Manager. The Usee
Registry keeps track of the types, or classes, of
Usees that Tarsier knows about, while the Usee
Manager keeps track of instances of those classes.
Conceptually, we can think of the Registry as a
catalogue of available models and modelling
components - and the Manager as the stock
currently held in a warehouse. For example, the
Usee Registry might contain entries for the Raster
data class, the Time Series data class and a
Rainfali Runoff Mode! class. Until the operator
starts running a model the manager is empty, but
once a rainfall runoff model is started. the
manager will contain entries for the inputs to the
model, such as a rainfall time series, the outputs,
such as a runoff time series as well as the model
itself.

All Tarsier modules are encapsulated in Dynamic
Link Libraries (DLLs) that are loaded by the
application shell at run time. Hach DLL provides
one or more capabilities, such as data types,
models or visualisation tools, which are recorded
in one of the registries. The registration process
aiso provides a function responsible for creating
an instance of the model. When a new instance of
one of the capabilities is required, such as a new
raster map, the kernel invokes the creation

function for that capability and adds a reference to
the new object in the appropriate manager.

2.2 Model Development

Model developers use the Borland C++ Builder
development environment to develop models and
user interfaces for Tarsier. The key model
components are a model class, inheriting from
User and, usually, a user inferface window, or
form, inheriting from User Form. Both classes
provide model specific functionality by
implementing key functions left deferred in the
parent class. Models implement the Execute

function to provide the algorithm for a single -

timestep of the model, and RegisterFields to
support the Tarsier IO system by recording
propertics of the model that should be saved to
and restored from disk.

For very simple models, Execute typically
includes the complete algorithm for the model. In
more complicated models, Execute usually
coordinates the algorithm by delegating work to
other functions, such as data retrieval and output
calculation.

RegisterFields informs the Tarsier kernel about
key model properties, such as parameters and data
inputs. The kernel supports a number of hasic
field types, including Boolean, integer, floating
point and strings, along with reference types such
as usees, and compound Hsts of other fields.

2.3 Model Integration

The Tarsier framework supports model
integration based on the concepts of Users and
Usees. If two models are using the same data they
are implicitly linked and each will be notified
when the other changes the data. When model A
uses the cutput data of model B as input, A is able
to respond immediately to data changes triggered
by B. While this scheme works well in many
situations, problems arise when loops, such as B
inputting the output from A, occur.

Since Tarsier models are developed in a high
levet language, model developers are free to
implement custom model integration schemes for
individual applications. This approach was used
in the EMSS {Watson et al, 2001] to integrate
individual subcatchment models to a stream
routing model.

2.4 Data Hepresentation

Tarsier data types are stored in DLLs and
registered as capabilities in the same way as

1627

models. The Tarsier kernel does not include
knowledge of any data type and is not restricted to
any pasticular set of data models. The Tarsier
framework currently includes DLLs providing
Raster, Time Series, Node Link Network and
Polygonal data models.

2.5 Visualisation and User Interfaces
Tarsier provides powerful visualisation tools for
each included data type, including a 3D renderer
for raster terrain data. In addition to these
standard tools, the framework includes a number
of components for guickly developing model-
specific visualisation aids, such as animated flow
charts (Figure 1). By using the user interface
design tool in Borland C++ Builder, and the
Tarsier visual components package, developers
can quickly design structural flowcharts for their
models that react to changes in model state each
timestep.

Figure 1. Stocks and flows view of a rainfall-
runoff model in Tarsier.

3. ICMS

ICMS is an integrated model development
environment based on the Open Modelling
Engine [Rizzoli et al,, 1998]. ICMS allows mode!
developers with little programming experience to
develop and integrate modelling components
using the customn modelling language MickL and
an interactive diagramming tool. ITMS compiles
the Mickl. model io native 80x86 code that is
activated at runtime. The compiled models run
within the ICMS environment taking advantage of
the systemn’s dynamic visualisation tools. ICMS is

being used to deploy a number of modelling
applications [for example Letcher et al., 2000]
and has also served as an aid to teaching general
modeliing concepts. ICMS includes a rich set of
mode]l management tools allowing developers to
package up libraries of models which can be
distributed to other ICMS users. The visual
approach taken to integrating models makes
ICMS a powerful tool for describing problems
and finding model structures that match the
conceptual view of a system.

3.1 The Open Modelling Engine (OME)

The Open Modelling Engine (OME) is a software
architecture for integrating modelling
components. The OME represents modelling
components as classes and instances of those
classes. An OME class defines a series of data
ternplates — properties of a component that can be
used for input to, output from or calculations
within the component — and one or more models,
An instance of a class includes instances of each
data template and is configured to run one of the
models from the class.

Each model within a class is implemented as a
series of three MickL functions: Initialisation,
Finalisation and Main. The OME Runtime
manager invokes these functions before, after and
doring model execution, respectively.

The OME structure provides a structure similar to
raditional object oriented systems where classes
and objecis encapsulate both a set of data and the
operations that are performed on that data.

3.2 MickL

MickL. is a dynamically typed procedural
programming language with implicit declarations
and C style syntax. Mickl. shares C syntax for
standard programming comstructs, such as
conditionals and loops, and includes a library of
subroutines for manipulating data instances
{Figure 2).

33 Data Represeniation

Hach data instance of an object is a scalar, vecior
or & matrix at any point in time. These three
simple types are sufficient, when combined with
the higher level of abstraction offered by OME
classes, for a large number of modelling
applications. In many cases models treat matrix
objects as grids with different semantics for
mathematical operations such as multiplication.

1628

function Maini}
{
// work out the outflow from the
7/ generation rates and the land uses
Outflow = SenRates * LandUses;
return O;

Figure 2. An example of ICMS MickL code.

34 Integrating Models

ICMS provides an interactive tool for integrating
models. Using the System view (Figure 3),
modelling systems can be constructed by placing
individual components on a canvas and drawing
links between them.

Figure 3. ICMS Systemn View showing a set of
linked biophysical processes.

Links between components are configured to
determine what information is transferred and in
what direction. The elegance and simplicity of the
tool provides model developers with significant
scope to design a modelling system. For exampie,
the system view can be used to construct a system
based on a “‘stocks and flows” approach, such as
routing water through a series of links, or a
process flow model, where each component
performs one piece of the overall process.

ICMS uses the information entered in the system
view to schedule model execution and transfer
information between components.

35 Visualisation and User [nierfaces

ICMS supports dynamic visualisation of each of
the three fundamental daia types, scalars, vectors
and mairices. Each data type can be visualised in
a spreadsheet view. Additionally, veciors can be
viewed as line graphs and matrices can be
represented as coloured raster grids.

Simple user interfaces for models are inferred
directly from the OME class. These interfaces

consist of a tree view, similar to the Windows
Explorer application, providing access to each
data instance of a model. This system provides
direct access to each parameter of @ model and
includes functionality for importing data sets,
such as time series and rasters.

Development of custom user interfaces, such as
decision support systern {DSS) front ends. is
achieved using the Borland Delphi development
tool and producing and loading a DLL.

4. COMPARING THE APPROACHES

ICMS and Tarsier are two considerably different .

modelling frameworks and either one's suitability
to a particular modelling application depends on a
number of factors. Possibly the most important
consideration is the different groups of model
developers targeted by the two frameworks. Other
factors include performance constraints and the
need to customise user interfaces. Architecturally,
the two frameworks differ considerably in how

models deal with data and how models
communicate,
4.1 Model Development Community

Tarsier requires model developers to have more
programming expertise than developers using
ICMS. For example, ICMS developers don't need
to know about DILLs, the registration of
capabilitiecs with a kernel, or how the daa
management system works.

While requiring less programming experience,
ICMS imposes more constraints on the stracture
of a model, possibly limiting its usefulness on
large modelling projects. ICMS developers have
limited scope to infroduce new data types within
their models or extend existing models using
techniques such as inheritance. Tarsier rewards
modellers with strong programming skiils by
giving more control over mode! structure and
more scope in designing solutions.

The simple model developmenat environment and
the strong model structure, offered by ICMS, has
made it an appropriate tool for use in courses
teaching general modelling concepts, as opposed
to a specific environment. Students are able (o
pick up the basics of the application and go on to
learn the principles of modelling largely
unhindered by technical environment issues.

While developing customised user interfaces for
ICMS models still requires a traditional
programming environment and the use of DLLs,

1629

the use of MickL for model coding allows a clean
separation of responsibilities between a2 modeller
developing a scientific algorithm and a
programmer packaging a DSS.

4.2 Model Processing Capabilities

Mode! Processing is the ability of the framework
to perform some operations on the model. There
are advantages to having a modelling framework
that acts as a “model-processing tool” analogous
to the way a model is a data processing tool.
Typical model processing tasks include saving the

state of a model to disk or repeatedly executing a
model in order to optimise parameters.

To perform these tasks automatically, the
framework needs to know the various properties
of a model, including its parameters and data
requirements. This information is not always
readily available, especially in traditional high-
level languages such as C++, where compiled
code retains no metadata about classes and their
properties. ICMS gathers the required information
from the Mickl. source code and the user’s
description of the OME class. Tarsier relies on the
RegisterFields function, provided by each model,
to get information about models. The Tarsier
approach, while one of few approaches available
with traditional languages, i error prone as it
relies on the model developer initially providing
information that cosrectly reflects the model
structure and subsequently maintaining the
information as the model evolves. ICMS has the
advantage of processing the model code itself,
allowing it fo extract the required information
automatically, avoiding the chance of mistakes.
4.3 Performance

The runtime performance of models in Tarsier is
typically an order of magnitude faster than
eguivalent models in ICMS. While the
performance of ICMS is not an issue on smaller
applications, it is a major factor limiting the
application of the system to large modelling
systems.

4.4 Communication Between Models

The ICMS system view integrates models using
explicit links Detween unils whereas Tarsier
allows models to be linked implicitly using shared
data.

Explicit links implies there is some knowledge,
recorded in the modelling systern, that modset A’s
output is linked to model B’s input. With the
implicit linking supported by Tarsier, models A

and B both share a data resource, C, but this is not
recorded anywhere. There is no information that
indicates that B is using the data as input to a
modelling operation and not just calculating
statistics on the data.

Expiicit linking provides a number of advantages
such as allowing the framework to control model
scheduling and easily identifying feedback issues.
Additionally, the scheme supported by Tarsier
only allows usees, such as rasters and time series,
0 be shared.

The implicit linking scheme in Tarsier eliminates
unnecessary data transfers as both models have
direct access to the data they share. However,
while data transfers conceptually occur in the
explicit linking model, they can be eliminated
using implementation techniques similar to the
data sharing mechanism.

4.5 Dealing with Feedback

When integrating models, sooner or later a
feedback situation arises where input to a model
is in someway dependent on its output at some
previous time. Both frameworks provide schemes
for dealing with feedback.

In the explicit linking scheme in ICMS, the model
scheduler uses the direction of links to determine
a suitable order for execution. Execution begins
with models that have no incoming links and
proceeds to models whose only incorming links
come from models that have already been
executed. When a feedback loop occurs, the
system cannot execute any of the models involved
in the loop.

In Tarsier there i3 no overall scheduler, and
models execute in response to update messages
from their input data sources. Model execution
results in new update messages being sent that
may trigger execution of another model. When
the result of running a mode! directly or indirectly
results in that model receiving an update message,
there is the potential for the system fo enter an
infinite loop.

Feedback can be hendled differently in the
implicit and explicit model integration schemes.
In Tarsier, model execution results in a model
being locked — placed in a state where it will
ignore update messages - until execution
completes. In ICMS, the model developer can use
Delay components to implement feedback. The
Delay component has one input and one output
and places its input from the previcus timestep on
its output. ICMS disallows feedback loops that do

1630

not contain delay components. By using the delay
component, the model scheduler is able to break
the feedback loop at each delay component and
schedule the system as if the loop does not exist.

5. CONCLUSION

Tarsier and ICMS represent significantly different
approaches to developing an environmental
modelling framework. While these two examples
by no means cover the entire parameter range of
environmental modelling frameworks, they do
give good, contrasting, examples of the design
decisions and tradeoffs that can occur in
framework development. As the two frameworks
evolve it seems likely that each will gain
attributes of the other. Tarsier may gain ICMS’
explicit model linking scheme and ICMS wili
provide more support for uwser interface
development. As it stands, both frameworks
support their own model development audience
well, by providing an appropriate balance of
support and {lexibility.

6. REFERENCES

Gamma, E.. R. Helm, R. Johnson, and J.
Viissides, Design Patterns: elements of
reusable object oriented software, Addison
Wesley, 1994,

Letcher, R. A., S5.M. Cuddy, and M. Reed, An
Integrated Catchment Management
System: A Socioeconomic Approach to
Water Allocation in the Namoi. Hydro
2000 3rd International Hydrology and
Water Resources Sympostum of The
Institution of Engineers, Australia. Perth,
Western Ausiralia. The Institution of
Engineers ACT, 20-23 November 2000.

M., SM. Cuddy, and AE. Rizzoli, A
framework for modelling multiple resource
management issues - an open modelling
approach. Environmenial Modelling and
Software, 14, 503-509, 1999,

Rizzoli, AE., 1L.R. Davis, and D.J. Abel, Model
and data integration and re-use in
environmental decision support systems.
Decision Support Systems, 24, 127-144,
1998,

Waison, F.G.R., I.M. Rahman, and SP. Seaton,

Deploying environmental software using

Reed,

the Tarsier modelling framework,
proceedings of the 3rd Annual Stream
Management Conference, Brisbane,

Australia, 27-29 August 2001.

